TANTA UNIVERSITY
FACULTY OF SCIENCE
DEPARTMENT OF BOTANY

	۱۱ آ					
	1	EXAMINAT	ION FOR SENIORS (FC	RTH YEAR) STUDENT	S OF BIOLOG	Y-SPECIAL BOTANY
1969		COURSE TITLE:	BIOENERGETICS			COURSE CODE: BO4101
DATE:	27	DECEMBER,2016	TERM: FIRST TO	OTAL ASSESSMENT M	ARKS: 100	TIME ALLOWED: 2 HOURS
		- ·	Answer the follo	wing questions (10)	<u> Monksi 1</u>	5 aach):
I	Ch	ose the letter	that shows the r	ight answer (15	(C10) is	s each).
			synthesize 1 mole	ecule of fatty acre	(4) 0	,
(a	t) 4	(b)		(c) 2		
2. Fa	ats	and oils are the	storage forms of	reduced carbon	III nin (d) anns	1.
(3	a) į	glycolysis (b)	chloroplasts	(c) mitochond	ria (d) seed	18
3. St	tore	ed lipids are me	etabolized finally	to	/ 1\	1
			fatty acids	(c) starch	(a) glyce	roi
4. M	[em	ibranes of oil b	ody have		(1)	1 1
(a	a) n	o lipids (b)	a double layer	(c) pigments	(d) a sin	igle layer
5. N	lun	ber of FADH ₂	produced in citric	c acid cycle is	(1)	
(a	1)2	(b)	1	(c) 10		
6. L	ipa	se converts trig	lycerides to fatty	acids and glycer	ol in	
(:	a) p	olastids (b)	glyoxysomes	(c) cytosol	(d) oil	body
7. Ir	ı in	ner mitochondi	rial membrane, in	nport of pyruvate	from cytos	sol is exchanged for
		OH- (b) (_	(c) ADP	(d) ATP	
8. F	at c	legradation occ	urs in			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(a) g	glyoxysomes or	aly (b) oleosome	es only (c) cytoso	ol only (d)	a,b,c+mitochondria
9. N	um	ber of carbon a	atoms of acetyl C			
(a) 3	(b) 2	2	(c) 3		
10.T	he	starting compo	und of oxidative	reactions of pento	ose phosph	ate is
(a	ı) g	lucose 6-p (b)	fructose 6-p	(c) ribose 5-p	(d) rib	ulose 5-p
II. <u>D</u>	<u>efi</u>	ne each of the	following (15 M	arks; 3 each):	~ 1	0.1 1 '
N	ΙAΙ	$ m OH_2$, photophos	phorylation, glyc	exysomes, enthall	by, first lav	v of thermodynamics
III.	\mathbf{W}_{1}	rite short note	s on 6 only of th	e following (42 I	<u>Marks; 7 e</u>	ach):
1. B	ios	ynthesis of pal	mitic acid in plas	tids. 2. Gly	oxalate cyc	ele.
3 6	Hiic	oneogenesis.	4. The energy re	eleased from oleic	c acid by β	-oxidation.
5. S	tru	cture of ATP sy	ynthase. 6. Chen	niosmosis in chlo	roplasts. 7	7. Glycolysis
IV	('omplete the fo	ollowing stateme	ents (28 Marks; 2	<u> 2 each):</u>	
1. P	rot	ons of respirato	ry chain are pum	ped fromto	which prod	luces a force called
2. P	ent	ose phosphate	pathway occurs in	- n		
3. F	une	ction of adening	e nucleotide trans	locator is		
			te is controlled by			
5 P	V11	$vate + NAD^{\dagger} +$	+ CO₄ vield		•	
6. S	ecc	and protein con	aplex of respirato	ry chain is called	and its	function is
7 T	'ha	energy investig	ng reactions of gl	vcolvsis vield		
8. P	roc	lucts of oxidati	ve reactions of pe	entose phosphate	arean	و Best Wishes في المنطقة Best Wishes
<u>.</u>			1	باسعة قلنطا آه	A DANCE م ا coupance	UN!"

QUALITY ASSURANCE UNIT

W.	< ç\$	
14.30.	Tanta University	·
	Faculty of Science	
1969	Botany Department	
Theoretical exam.	Assessment = 100 marks.	Time allowed: 2 hours.
Course Title: Biocontro	ol of plant diseases.	Course code: MB4141.
Special Botany program	n.	Academic year: 2016/2017.
Juniors (Level: 4 –	Semester: 1)	5 January 2017.

(1) A. Give the definition of **10 only** of the following:

(20 marks)

1. Exclusion.

2. (Ti) plasmid.

3. Rhizosphere.

4. Predator.

5. Cryprotecting media.

6. Pre-harvest intervals.

7. Disease suppressive soils.

8. Biocontrol in entomology.

9. Pathogen.

10. Biocontrol in plant pathology.

11.Shelf life.

B. Illustrate the epizootics in Bacteria, viruses and fungi.

(10 marks)

(2) Put $\sqrt{\text{ or } X}$ and correct the false:

(20 marks)

- 1. Half of all predators are Coleopterans.
- 2. Bt bacteria has the power to control insects with alkaline pH in the gut.
- 3. From advantages of biological control, BCAs are effective against specific plant diseases.
- 4. Chitosan is a toxic polymer of alpha-1,4-glucoseamine produced from cuticle.
- 5. The action of any organism that suppresses the normal growth of a plant pathogen refers to parasitism.
- 6. One time or occasional application maintains pathogen populations below threshold levels called occasional application.
- 7. AQ10 is a mycofungicide specific to blight diseases.
- 8. Parasitoids are restricted to Neuroptera and Odonata.
- 9. Non-pathogenic bacterium, Agrobactertum radiobacter strain K84 produces penicillin antibiotic.
- 10. Conservation biological control usually done by government authorities.

(3) Complete the sentence:

(30 marks)

- 1. Trichoderma species have been very successfully used as mycofungicides because they are 1.....2......3......4......5......6......7.......
- 2. The fungus.....the cause of gummosis or dieback of apricot trees and dead arm of grapevine, is an example of....... It was controlled by the saprophytic fungus..... where the mechanism is.....

انظر باقى الأسئلة خلف الصفحة

m C (2)

TANTA UNIVERSITY FACULTY OF SCIENCE BOTANY DEPARTMENT

Final First Exam for 4th Level (Botany)

Course Title:	Env	ironmental Issue	Course Code: Bo 4111
22, January, 2017	Term: First	Total assessment marks: 1	00 Time Allowed: 2hour
		الية (۲۰ درجة)	السؤال الأول: أكمل العبارات التا
ر (۱۶ درجات)	9	و	١ - من مصادر الطاقة المتجددة
و(١٤ درجات)		إنسان منهاو	٢- تقدم النباتات البرية خدمات للا
من غاز الأوزون (٤ درجات)	میر	لوروكربون له القدرة على تد	٣- جزئ واحد من غاز الكلوروف
			٤- مصدر الطاقة المتجددة الذي ا
(؛ درجات)			٥- الغازات الدفيئة هي
(۲۰ درجة)	ع تصويب الخطأ	ر (x) أمام العبارات التالية، م	السؤال الثاني: ضع علامة (V) أو
٤ درجات)	()	الحجري حوالي ٤٠٠ سنة	١ - يقدر العمر الإفتراضي للفحم
٤ درجات))	قيع الشديد ()	٢- تتميز طبقة الأيونوسفير بالص
؛ در جات)	()	رجة الحرارة ارتباطا طرديا	٣ـ ترتبط كمية غاز الأوزون ودر
٤ در جات)) (الحفاظ على التنوع البيئي (٤- من أهداف المحميات الطبيعية
؛ در جات))	كاني السريع ()	٥- من أسباب التصحر النمو الس
		يأتي (٣٠ درجة)	السؤال الثالث: بما تفسر كلا مما ب
۱ درجات)	نطاق محدود (٠	هرومائية إلا أنها تستخدم في	١- رغم توافر مصادر الطاقة الك
	(۱۰ درجات)	بة وعلاقتها بطبقة الأوزون	٢- فوتونات الأشعة الفوق بنفسج
		صو (۱۰ درجات)	٣- التصحر على امتداد بحيرة ناه
		لمجموعتين (۳۰ درجة)	السؤال الرابع: أجب على إحدى اا
وسيلتين فقط) (١٥ درجة)	لحاجة إليها (أذكر	ين الطاقة لاستخدامها وقت ا	المجموعة الأولى: ١- وسائل تخز
	درجات)	رة الاحتباس الحراري (١٥	۲۔ تفسیر ظاہ
زيوت المعدنية (١٥ درجة)	الوقود الحفري واا	رد والزيوت الحيوية مقارنة بـ	المجموعة الثانية: ١- أهمية الوقو
حفاظ على التنوع الحبوي (١٥ در.	ك المحميات في ال	المحميات الطبيعية ودور تلا	۲ ـ أسس اختيار

تمنياتي بالتوفيق والنجاح

Examiners: Dr. Dalia Abd El-Azeem Ahmed and Dr. Kamal Shaltout

Correctors: Dr. Kamal Shaltout, Dr. Dalia Abd El-Azeem Ahmed, Dr. El-Sayed Morsi

1969

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY

FINAL EXAM (FIRST TERM, JAN. 2017) FOR THE FOURTH YEAR (BOTANY SPECIAL)

COURSE TITLE	PLANT MOLECULAR SYSTEMATICS	COURSE CODE: BO4107
JAN. 2017	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HRS

Please answer all the following questions:

) Compare between the following:	(30 marks)
a) RFLP and RAPD markers	
b) Mitochondrial and nuclear genomes	
c) Allopatric and sympatric speciation	
) Complete the following:	(20 marks)
a) Purines include the nucleotide bases a	nd
b) Tandem sequence repeats of about 9-100 base par	
c) The result of a molecular phylogenetic analysis is	
d) A protein is composed of a string of	onprosed in
e) The enzyme added to catalyse the PCR reaction i	s called
,,,,	
	*
) Define the following scientific terms:	(20 marks)
	(20 marks)
a) Plastid genome	(20 marks)
a) Plastid genome b) Parapatric speciation	(20 marks
a) Plastid genomeb) Parapatric speciationc) Primer	(20 marks)
a) Plastid genome b) Parapatric speciation	(20 marks)
a) Plastid genome b) Parapatric speciation c) Primer d) Species	
a) Plastid genomeb) Parapatric speciationc) Primer	(20 marks)
a) Plastid genome b) Parapatric speciation c) Primer d) Species	
a) Plastid genome b) Parapatric speciation c) Primer d) Species Write briefly on the following: a) Isozymes	
a) Plastid genome b) Parapatric speciation c) Primer d) Species Write briefly on the following: a) Isozymes	
a) Plastid genome b) Parapatric speciation c) Primer d) Species Write briefly on the following: a) Isozymes b) Sanger sequencing	
a) Plastid genome b) Parapatric speciation c) Primer d) Species Write briefly on the following: a) Isozymes b) Sanger sequencing c) Cladogenesis	

Best wishes,

Examiner:

Dr. Mohamed El-Esawi

3

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY

FINAL EXAM (FIRST TERM, JAN. 2017) FOR THE FOURTH YEAR (BOTANY SPECIAL)

COURSE TITLE PLANT MOLECULAR SYSTEMATICS COURSE CODE: BO4107

AN. 2017 TOTAL ASSESSMENT MARKS: 100

TIME ALLOWED: 2 HRS

Please answer all the following questions:

<u>1)</u>	<u>C</u>	ompare between the following:	(30 marks)
	a)	RFLP and RAPD markers	•
	-	Mitochondrial and nuclear genomes	
		Allopatric and sympatric speciation	
	,	, ,	
<u>2)</u>	<u>C</u>	omplete the following:	(20 marks)
	a)	Purines include the nucleotide bases and .	
	b)		
	c)	The result of a molecular phylogenetic analysis is exp	
	d)		
	e)	The enzyme added to catalyse the PCR reaction is cal	
			,
2	т.		•
<u>3)</u>	D	efine the following scientific terms:	(20 marks)
<u>3)</u>		efine the following scientific terms: Plastid genome	(20 marks)
<u>3)</u>	a)	,	(20 marks)
<u>3)</u>	a)	Plastid genome	(20 marks)
<u>3)</u>	a) b) c)	Plastid genome Parapatric speciation	(20 marks)
<u>3)</u>	a) b) c)	Plastid genome Parapatric speciation Primer	(20 marks)
<u>3)</u>	a) b) c) d)	Plastid genome Parapatric speciation Primer	
<u>3)</u>	a) b) c) d)	Plastid genome Parapatric speciation Primer Species Vrite briefly on the following:	(20 marks)
<u>3)</u>	a) b) c) d) W	Plastid genome Parapatric speciation Primer Species /rite briefly on the following: Isozymes	
<u>3)</u>	a) b) c) d) W a) b)	Plastid genome Parapatric speciation Primer Species /rite briefly on the following: Isozymes Sanger sequencing	
<u>3)</u>	a) b) c) d) W a) b) c)	Plastid genome Parapatric speciation Primer Species /rite briefly on the following: Isozymes Sanger sequencing Cladogenesis	
4)	a) b) c) d) w a) b) c) d)	Plastid genome Parapatric speciation Primer Species /rite briefly on the following: Isozymes Sanger sequencing Cladogenesis DNA function	
4)	a) b) c) d) W a) b) c)	Plastid genome Parapatric speciation Primer Species /rite briefly on the following: Isozymes Sanger sequencing Cladogenesis	

Best wishes,

Examiner:

Dr. Mohamed El-Esawi

1 1/2

	Tanta University - Faculty of Science - Botany Department					
	EX	AMINATION F	FOR JUNIOR (4th YEAR SPECIAL BOTANY)			
in a	Course Title	رض	الكتابة العلمية والعرو	Course Code: B() 4113		
Date	Jan 2016	Term: First	Total Assessment: 100 Marks	Time Allowed: 2 Hrours		

أجب على كل من الأسنلة التالية (٥ درجات لكل نقطة: المجموع الكلى ١٠٠ = درجة)

- ١- أذكر أهم أنواع الكتابة العلمية؟
- ٢- ما المقصود بالكلمات المفتاحية، وما الهدف منها؟
 - ٣- أذكر ثلاثة من أهم مميزات العنوان الجيد؟
 - ٤- أذكر ثلاثة من أهم مميزات الملخص؟
- ٥- ما هو الهدف الأساسي من مقدمة أي نوع من الكتابة؟
- ٦- أذكر ثلاثة من أهم ما يجب مراعاته عند الشروع في كتابة النتائج؟
 - ٧- وضح كيف تعد المناقشة أصعب الأجزاء في الكتابة؟
 - ٨- ماهي أشهر الطرائق المستخدمة في كتابة المراجع؟
 - ٩- ما الذي يجب أن تحتويه كلمة الشكر؟
- ١٠ متى يجب، ومتى لايجب كتابة تفاصيل الطرائق المستخدمة في إعداد البحث العلمي؟
 - ١١- متى يكون عرض النتيجة كشكل أفضل من عرضها كجدول؟
 - ١٢- أعط مثال للأخطاء الشائعة في الجداول؟
- ١٣- أذكر ثلاثة مما يجب مراعاته عند إختيار الصور لوضعها في البحث أو الكتاب العلمي؟
 - ١٤ ما المقصود بمعجم المصطلحات، ومتى يجب كتابته؟
 - ه ١ ترتب ورقة الخطأ والتصويب بعدة طرق، أذكر إحداها؟
 - ١٦- أذكر أهم فوائد التفكير العلمي؟
 - ١٧ ـ ماهى الخطوات الأساسية للمنهج العلمى؟
 - ١٨- أذكر مراحل الذاكرة الأربعة، مع التفريق بايجاز بينها؟
- ١٩ وضح الفرق بين الطرق الشائعة لتذكر المادة العلمية أثناء العرض، مع تحديد أفضلها؟
 - . ٢- عرف التغذية الراجعة، وكيف يمكن التعامل معها بعد العرض؟

Examiner: Dr. Kamal Shaltout

CWIN

1969

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY

FINAL EXAM (FIRST TERM, JAN. 2017) FOR THE FOURTH YEAR (BOTANY CHEMISTRY)

COURSE TITLE PLANT MOLECULAR SYSTEMATICS COURSE CODE: BO4105

JAN. 2017 TOTAL ASSESSMENT MARKS: 100

TIME ALLOWED: 2 HRS

Please answer all the following questions:

	8 1	
1)	omplete the following: (20 marks)	
а	DNA code is read and converted to protein in two steps called and	
ŀ	All of the genes within a cell are called	
	are different forms of a protein with same catalytic activity but with different molecular weight.	
Ċ	A gene is a code composed of a string of	
e	is a mathematical structure used to model the actual	
	evolutionary history of a group of sequences or organisms.	
2)	Compare between the following: (30 marks)	
2	RAPD and SSR markers	
ŀ	Nuclear and plastid genomes	
	Peripatric and parapatric Speciation	
3)	efine the following scientific terms: (20 marks)	
2	Species	
	Cladogenesis	
	Taq polymerase enzyme	
1	Proteins	
4)	Vrite briefly on the following: (30 marks)	
2	Sanger sequencing	
ł	Polymerase chain reaction	
C	Allopatric speciation	
C	DNA structure	
6	Amplified fragment length polymorphism (AFLP)	
f	Speciation by gene transposition	

Examiner:

Dr. Mohamed El-Esawi

DATE:

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY

FINAL EXAMINATION (JANUARY2017) FOR THEFORTH YEAR SPECIAL BOTANYSTUDENTS

COURSETITLE	GENETIC ENGINEERING	COURSE CODE: BO4103
JANUARY, 2017	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS

Answer the following questions:

1) Write on only threethe followings

(30 marks)

- a) Explain the functions of Virgenes.
- b) Explain the problems encountered with gene expression in prokaryotes.
- c) Mention the steps to evaluate transgenic plants.
- d) Mention the types of cloning vectors.
- 2) Compare between only four of the followings:

(20 marks)

- a) Insertion and replacement cloning
- b) Prokarotic and Eukaryptic expression vectors
- c) Selectable markers and reporter genes with examples.
- d) Electroporation and Microinjection
- e) Cosmids and plasmids.
- 3) Give reasons for:

(20 marks)

- a) Agrobacterium-mediated system can not be used for transformation of monocotyledous plants.
- b) Genomic clones can not be expressed in prokaryotic expression vectors.
- c) Use of Gold metal and Helium gas in Biolistic Gun.
- d) MS-medium is commonly used in plant tissue culture.
- 4) Complete the followings:

(10 marks)[,]

- a) Production of fungal resistant plants can be achieved by insertion of gene, while viral resistant plants are produced by insertion of gene
- 5) With labeled drawings only illustrate the followings:

(20 marks)

- a) Ti-plasmid.
- b) Diagramatic representation of the Biolistic Gun.

Best wishes

Examiner committee: Prof. Dr. Ashraf Haider Prof. Dr. Hanan Ibraheem

CN

TANTA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BOTANY

FINAL EXAMINATION (JANUARY2017) FOR THEFORTH YEAR SPECIAL BOTANYSTUDENTS

COURSETITLE GENETIC ENGINEERING

COURSE CODE: BO4103

DATE:

JANUARY, 2017

TOTAL ASSESSMENT MARKS: 100

TIME ALLOWED: 2 HOURS

Answer the following questions:

1) Write on only threethe followings

(30 marks)

- a) Explain the functions of Virgenes.
- b) Explain the problems encountered with gene expression in prokaryotes.
- c) Mention the steps to evaluate transgenic plants.
- d) Mention the types of cloning vectors.
- 2) Compare between only four of the followings:

(20 marks)

- a) Insertion and replacement cloning
 - b) Prokarotic and Eukaryptic expression vectors
 - c) Selectable markers and reporter genes with examples.
 - d) Electroporation and Microinjection
 - e) Cosmids and plasmids.
- 3) Give reasons for:

(20 marks)

- a) Agrobacterium-mediated system can not be used for transformation of monocotyledous plants.
- b) Genomic clones can not be expressed in prokaryotic expression vectors.
- c) Use of Gold metal and Helium gas in Biolistic Gun.
- d) MS-medium is commonly used in plant tissue culture.
- 4) Complete the followings:

(10 marks)

- a) Production of fungal resistant plants can be achieved by insertion of gene, while viral resistant plants are produced by insertion of gene
- b) Production of drought tolerant plants can be achieved by insertion of gene, while salt tolerant plants are produced by insertion of gene
- 5) With labeled drawings only illustrate the followings:

(20 marks)

- a) Ti-plasmid.
- b) Diagramatic representation of the Biolistic Gun.

Best wishes

Examiner committee:

Prof. Dr. Ashraf Haider

Prof. Dr. Hanan Ibraheem

(W/2/2/2)

		TANTA UNI		SITY FACULTY OF PARTMENT OF BOTANY	SCIENCE
	THEORITIC	CAL EXAMI	NAT	ION FOR FOURTH YEAR S MICROBIOLOGY	TUDENTS OF CHEM/
1969	COURSE TITLE:	PHYSIOLO			COURSE CODE:BO4123
DATE:	JANUARY 2017	TERM: 1	TO	TAL ASSESSMENT MARKS:	TIME ALLOWED: 2H.

Question 1: Give short accounts on the followings

(30 marks)

- 1- Chemical structure of cyanocobalamin (vitamin B₁₂).
- 2- Photobioreactors: uses, advantages and disadvantages.
- 3- Chemical structure of the chlorophyll molecule.
- 4- Lag phase in the standard algal growth curve.
- 5- Light and combined nitrogen as factors affecting N2 fixation in algae.
- 6- Photoassimilation of acetate by algae.

Question 2: Complete the following sentences	(25 marks)
1- Mixotrophic algae are	•
2- The Phycobiliproteins pigments in algae are	
3- Heterotrophy is defined as	
4- Acetylene inhibits N ₂ fixation because	
5- Nitrogenase enzyme structure is	
6- Factor B is formed by	
7- A continuous culture is	
8- Xanthophylls are	
9- Algae need Fe and Cu for their growth because	
10- A batch culture is	

- 1- The requirement of Mg and Co elements for algal growth.
- 2- N₂₋ fixation in heterocystous and nonheterocystous cyanophyta
- 3- The exponential phase and the death phase of an algal culture.
- 4- Indices of algal growth by optical density and counting cells techniques.
- 5- The oxytroph (acetate) and haplotroph (glucose) algae.

(W/2/e/1/2)

		TANTA UNI	VERSITY FACULTY C DEPARTMENT OF BOTANY	F SCIENCE
	THEORITICAL EXAMINATION FOR FOURTH YEAR STUDENTS OF CHEMI MICROBIOLOGY			
1969	COURSE TITLE:	PHYSIOLO	GY OF ALGAE	COURSE CODE:BO4123
DATE:	JANUARY 2017	TERM: 1	TOTAL ASSESSMENT MARKS	TIME ALLOWED: 2H.

Question 1: Give short accounts on the followings

(30 marks)

- 1- Chemical structure of cyanocobalamin (vitamin B₁₂).
- 2- Photobioreactors: uses, advantages and disadvantages.
- 3- Chemical structure of the chlorophyll molecule.
- 4- Lag phase in the standard algal growth curve.
- 5- Light and combined nitrogen as factors affecting N2 fixation in algae.
- 6- Photoassimilation of acetate by algae.

Question 2: Complete the following sentences 1- Mixotrophic algae are... 2- The Phycobiliproteins pigments in algae are... 3- Heterotrophy is defined as... 4- Acetylene inhibits N2 fixation because... 5- Nitrogenase enzyme structure is... 6- Factor B is formed by... 7- A continuous culture is... 8- Xanthophylls are... 9- Algae need Fe and Cu for their growth because... 10- A batch culture is...

- 1- The requirement of Mg and Co elements for algal growth.
- 2- N_{2-} fixation in heterocystous and nonheterocystous cyanophyta
- 3- The exponential phase and the death phase of an algal culture.
- 4- Indices of algal growth by optical density and counting cells techniques.
- 5- The oxytroph (acetate) and haplotroph (glucose) algae.

(W/2/e/1/1)

	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BOTANY					
	THEORITICAL EXAMINATION FOR FOURTH YEAR STUDENTS OF CHEM/ MICROBIOLOGY					
1969	COURSE TITLE:		GY OF ALGAE	COURSE CODE:BO4123		
DATE:	JANUARY 2017	TERM: 1	TOTAL ASSESSMENT MAR	TIME ALLOWED: 2H.		

Question 1: Give short accounts on the followings

(30 marks)

- 1- Chemical structure of cyanocobalamin (vitamin B₁₂).
- 2- Photobioreactors: uses, advantages and disadvantages.
- 3- Chemical structure of the chlorophyll molecule.
- 4- Lag phase in the standard algal growth curve.
- 5- Light and combined nitrogen as factors affecting N2 fixation in algae.
- 6- Photoassimilation of acetate by algae.

- 1- The requirement of Mg and Co elements for algal growth.
- 2- N_{2-} fixation in heterocystous and nonheterocystous cyanophyta
- 3- The exponential phase and the death phase of an algal culture.
- 4- Indices of algal growth by optical density and counting cells techniques.
- 5- The oxytroph (acetate) and haplotroph (glucose) algae.

6/2/e/1/1)

	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BOTANY				
	THEORITICAL EXAMINATION FOR FOURTH YEAR STUDENTS OF CHEM/ MICROBIOLOGY				
1959	COURSE TITLE:	PHYSIOLOGY OF ALGAE	COURSE CODE:BO4123		
DATE:	JANUARY 2017	TERM: 1 TOTAL ASSESSMENT I	MARKS. TIME ALLOWED: 2H.		

Question 1: Give short accounts on the followings

(30 marks)

- I- Chemical structure of cyanocobalamin (vitamin B_D).
- 2- Photobioreactors: uses, advantages and disadvantages.
- 3- Chemical structure of the chlorophyll molecule.
- 4- Lag phase in the standard algal growth curve.
- 5- Light and combined nitrogen as factors affecting N2 fixation in algae.
- 6- Photoassimilation of acetate by algae.

Question 2: Complete the following sentences	(25 marks)
1- Mixotrophic algae are	'
2- The Phycobiliproteins pigments in algae are	
3- Heterotrophy is defined as	
4- Acetylene inhibits N ₂ fixation because	
5- Nitrogenase enzyme structure is	
6- Factor B is formed by	
7- A continuous culture is	
8- Xanthophylls are	
9- Algae need Fe and Cu for their growth because	
10- A batch culture is	

- 1- The requirement of Mg and Co elements for algal growth.
- 2- N2. fixation in heterocystous and nonheterocystous cyanophyta
- 3- The exponential phase and the death phase of an algal culture.
- 4- Indices of algal growth by optical density and counting cells techniques.
- 5- The oxytroph (acetate) and haplotroph (glucose) algae.